Displaying 61 – 80 of 2184

Showing per page

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields...

A fictitious domain method for the numerical two-dimensional simulation of potential flows past sails

Alfredo Bermúdez, Rodolfo Rodríguez, María Luisa Seoane (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the mathematical and numerical analysis of a simplified two-dimensional model for the interaction between the wind and a sail. The wind is modeled as a steady irrotational plane flow past the sail, satisfying the Kutta-Joukowski condition. This condition guarantees that the flow is not singular at the trailing edge of the sail. Although for the present analysis the position of the sail is taken as data, the final aim of this research is to develop tools to compute the sail...

A fictitious domain method for the numerical two-dimensional simulation of potential flows past sails

Alfredo Bermúdez, Rodolfo Rodríguez, María Luisa Seoane (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the mathematical and numerical analysis of a simplified two-dimensional model for the interaction between the wind and a sail. The wind is modeled as a steady irrotational plane flow past the sail, satisfying the Kutta-Joukowski condition. This condition guarantees that the flow is not singular at the trailing edge of the sail. Although for the present analysis the position of the sail is taken as data, the final aim of this research is to develop tools to compute the sail...

A finite difference method for fractional diffusion equations with Neumann boundary conditions

Béla J. Szekeres, Ferenc Izsák (2015)

Open Mathematics

A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference...

A finite element analysis for elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1981)

Aplikace matematiky

Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.

A finite element convergence analysis for 3D Stokes equations in case of variational crimes

Petr Knobloch (2000)

Applications of Mathematics

We investigate a finite element discretization of the Stokes equations with nonstandard boundary conditions, defined in a bounded three-dimensional domain with a curved, piecewise smooth boundary. For tetrahedral triangulations of this domain we prove, under general assumptions on the discrete problem and without any additional regularity assumptions on the weak solution, that the discrete solutions converge to the weak solution. Examples of appropriate finite element spaces are given.

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.

Currently displaying 61 – 80 of 2184