Proper orthogonal decomposition (POD) is a powerful technique for model reduction of linear and non-linear systems. It is based on a Galerkin type discretization with basis elements created from the system itself. In this work, error estimates for Galerkin POD methods for linear elliptic, parameter-dependent systems are proved. The resulting error bounds depend on the number of POD basis functions and on the parameter grid that is used to generate the snapshots and to compute the POD basis. The...
The purpose of our work is to develop an automatic shape optimization tool for runner wheel blades in reaction water turbines, especially in Kaplan turbines. The fluid flow is simulated using an in-house incompressible turbulent flow solver based on recently introduced isogeometric analysis (see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009). The proposed automatic shape optimization approach is based on a so-called hybrid optimization which combines...
The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by...