Numerical study of a discrete projection method for rotating incompressible flows.
In [Progress Math.233 (2005)], David suggested the existence of a new type of global minimizers for the Mumford-Shah functional in . The singular set of such a new minimizer belongs to a three parameters family of sets . We first derive necessary conditions satisfied by global minimizers of this family. Then we are led to study the first eigenvectors of the Laplace-Beltrami operator with Neumann boundary conditions on subdomains of with three reentrant corners. The necessary conditions are...
Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.
A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.
A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.
The paper deals with the analysis and numerical study of the domain decomposition based preconditioner for algebraic systems arising from the discontinuous Galerkin (DG) discretization of the linear elliptic problems. We introduce the DG discretization of the model problem and present the spectral -bound of the corresponding linear algebraic systems. Moreover, we present the two-level additive Schwarz preconditioner together with the theoretical result related to the estimate of the condition number....
Assuming an incident wave to be a field source, we calculate the field potential in a neighborhood of an inhomogeneous body. This problem which has been formulated in can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulated on a sphere. Then the potential satisfies a well posed boundary value problem in a ball containing the body. A numerical approximation is suggested and its convergence is analyzed.
This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...
This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...
Over the last three decades Computational Fluid Dynamics (CFD) has gradually joined the wind tunnel and flight test as a primary flow analysis tool for aerodynamic designers. CFD has had its most favorable impact on the aerodynamic design of the high-speed cruise configuration of a transport. This success has raised expectations among aerodynamicists that the applicability of CFD can be extended to the full flight envelope. However, the complex nature...
This work is devoted to the study of a two-dimensional vector Poisson equation with the normal component of the unknown and the value of the divergence of the unknown prescribed simultaneously on the entire boundary. These two scalar boundary conditions appear prima facie alternative in a standard variational framework. An original variational formulation of this boundary value problem is proposed here. Furthermore, an uncoupled solution algorithm is introduced together with its finite element...
A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity...