On the approximation of a quasilinear mixed problem
A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper...
A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...
A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...
We study the 3-D elasticity problem in the case of a non-symmetric heterogeneous rod. The asymptotic expansion of the solution is constructed. The coercitivity of the homogenized equation is proved. Estimates are derived for the difference between the truncated series and the exact solution.
We prove the convergence of polynomial collocation method for periodic singular integral, pseudodifferential and the systems of pseudodifferential equations in Sobolev spaces via the equivalence between the collocation and modified Galerkin methods. The boundness of the Lagrange interpolation operator in this spaces when allows to obtain the optimal error estimate for the approximate solution i.e. it has the same rate as the best approximation of the exact solution by the polynomials.
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
Error estimates for the mixed finite element solution of 4th order elliptic problems with variable coefficients, which, in the particular case of aniso-/ortho-/isotropic plate bending problems, gives a direct, simultaneous approximation to bending moment tensor field and displacement field 'u', have been developed considering the combined effect of boundary approximation and numerical integration.