Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems
We present an improved, near-optimal hp error estimate for a non-conforming finite element method, called the mortar method (M0). We also present a new hp mortaring technique, called the mortar method (MP), and derive h, p and hp error estimates for it, in the presence of quasiuniform and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we present, show that like (M0), (MP) is also a viable mortaring technique for the hp method.