The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...
The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart.
However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features
of this system. For this reason, a simplification of this model, called Monodomain problem is quite often
adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in
the presence of applied currents...
The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in...
We consider the analysis and
numerical solution of a forward-backward boundary value problem.
We provide some motivation, prove existence and uniqueness in a function
class especially geared to the problem at hand, provide various energy
estimates, prove a priori error estimates for the Galerkin method,
and show the results of some numerical computations.
We present here some details of our implementation of Wavelet-Galerkin method for Poisson equation in C language parallelized by POSIX threads library and show its performance in dimensions .
PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) is a newly emerging collection of software libraries, uniquely combining Quadratic Programming (QP) algorithms and Domain Decomposition Methods (DDM). Among the main applications are contact problems of mechanics. This paper gives an overview of PERMON and selected ingredients improving scalability, demonstrated by numerical experiments.
Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.