Sur l'approximation du problème de Dirichlet pour les opérateurs elliptiques d'ordre 2
Soit un opérateur non nécessairement linéaire d’un Hilbert de l’équation , pour donné dans . Nous étudions la convergence du schéma itératif suivant: aou est fonction d’un opérateur auto-adjoint choisi de telle sorte que l’inversion de soit immédiate numériquement. Par exemple avec un entier et une constante convenablement choisis. Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces
We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented....
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...