Page 1 Next

Displaying 1 – 20 of 50

Showing per page

Editorial

Olga Krupková (2010)

Communications in Mathematics

Eight-shaped Lissajous orbits in the Earth-Moon system

Grégory Archambeau, Philippe Augros, Emmanuel Trélat (2011)

MathematicS In Action

Euler and Lagrange proved the existence of five equilibrium points in the circular restricted three-body problem. These equilibrium points are known as the Lagrange points (Euler points or libration points) L 1 , ... , L 5 . The existence of families of periodic and quasi-periodic orbits around these points is well known (see [20, 21, 22, 23, 37]). Among them, halo orbits are 3-dimensional periodic orbits diffeomorphic to circles. They are the first kind of the so-called Lissajous orbits. To be selfcontained,...

Entropy and complexity of a path in sub-riemannian geometry

Frédéric Jean (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We characterize the geometry of a path in a sub-riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset A of a metric space is the minimum number of balls of a given radius ε needed to cover A . It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a sub-riemannian manifold as the infimum of the lengths of all trajectories contained in an ε -neighborhood of the path,...

Entropy and complexity of a path in sub-Riemannian geometry

Frédéric Jean (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We characterize the geometry of a path in a sub-Riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset A of a metric space is the minimum number of balls of a given radius ε needed to cover A. It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a sub-Riemannian manifold as the infimum of the lengths of all trajectories contained in an ε-neighborhood of the path,...

Envelope construction of two-parameteric system of curves in the technological practice

Bartoň, Stanislav, Petřík, Michal (2015)

Programs and Algorithms of Numerical Mathematics

A two-parametric system of close planar curves is defined in the introduction of the presented article. Next a theorem stating the existence of the envelope is presented and proved. A mathematical model of the collecting mechanism of the Horal forage trailer is developed and used for practical demonstrations. The collecting mechanism is a double joint system composed of three rods. An equation describing the trajectory of a random point of the working rod is derived using Maple. The trajectories...

Erratum

(2013)

Communications in Mathematics

Currently displaying 1 – 20 of 50

Page 1 Next