Page 1 Next

Displaying 1 – 20 of 21

Showing per page

FDI(R) for satellites: How to deal with high availability and robustness in the space domain?

Xavier Olive (2012)

International Journal of Applied Mathematics and Computer Science

The European leader for satellite systems and at the forefront of orbital infrastructures, Thales Alenia Space, is a joint venture between Thales (67%) and Finmeccanica (33%) and forms with Telespazio a Space Alliance. Thales Alenia Space is a worldwide reference in telecoms, radar and optical Earth observation, defence and security, navigation and science. It has 11 industrial sites in 4 European countries (France, Italy, Spain and Belgium) with over 7200 employees worldwide. Satellite evolution...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Finite element analysis of sloshing and hydroelastic vibrations under gravity

Alfredo Bermúdez, Rodolfo Rodríguez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with a finite element method to solve fluid-structure interaction problems. More precisely it concerns the numerical computation of harmonic hydroelastic vibrations under gravity. It is based on a displacement formulation for both the fluid and the solid. Gravity effects are included on the free surface of the fluid as well as on the liquid-solid interface. The pressure of the fluid is used as a variable for the theoretical analysis leading to a well posed mixed linear eigenvalue...

Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation

Zhi-cai Ma, Yong-zheng Sun, Hong-jun Shi (2016)

Kybernetika

In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated....

Flocking control of multi-agent systems with application to nonholonomic multi-robots

Qin Li, Zhong-Ping Jiang (2009)

Kybernetika

In this paper, we revisit the artificial potential based approach in the flocking control for multi-agent systems, where our main concerns are migration and trajectory tracking problems. The static destination or, more generally, the moving reference point is modeled by a virtual leader, whose information is utilized by some agents, called active agents (AA), for the controller design. We study a decentralized flocking controller for the case where the set of AAs is fixed. Some results on the velocity...

Fopid Controller Design for Robust Performance Using Particle Swarm Optimization

Zamani, Majid, Karimi-Ghartemani, Masoud, Sadati, Nasser (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05This paper proposes a novel method to design an H∞ -optimal fractional order PID (FOPID) controller with ability to control the transient, steady-state response and stability margins characteristics. The method uses particle swarm optimization algorithm and operates based on minimizing a general cost function. Minimization of the cost function is carried out subject to the H∞ -norm; this norm is also...

Currently displaying 1 – 20 of 21

Page 1 Next