Displaying 221 – 240 of 246

Showing per page

The n -centre problem of celestial mechanics for large energies

Andreas Knauf (2002)

Journal of the European Mathematical Society

We consider the classical three-dimensional motion in a potential which is the sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configuration of the n centres, we find a universal behaviour for all energies E above a positive threshold. Whereas for n = 1 there are no bounded orbits, and for n = 2 there is just one closed orbit, for n 3 the bounded orbits form a Cantor set. We analyze the symbolic dynamics and estimate Hausdorff dimension and topological entropy of this hyperbolic set....

Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials

Mohamed A. Agwa, António Pinto da Costa (2015)

International Journal of Applied Mathematics and Computer Science

The present work addresses the problem of determining under what conditions the impending slip state or the steady sliding of a linear elastic orthotropic layer or half space with respect to a rigid flat obstacle is dynamically unstable. In other words, we search the conditions for the occurrence of smooth exponentially growing dynamic solutions with perturbed initial conditions arbitrarily close to the steady sliding state, taking the system away from the equilibrium state or the steady sliding...

Currently displaying 221 – 240 of 246