Loading [MathJax]/extensions/MathZoom.js
Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.
We associate to a dynamic equation three different connections and then we consider the meaning of the vanishing of their curvatures. Some peculiarities of the case of autonomous dynamic equation polynomial in the velocities are pointed out. Finally, using the so-called Helmholtz conditions, we investigate a particular example.
The homogeneity properties of two different families of geometric objects playing a crutial role in the non-autonomous first-order dynamics - semisprays and dynamical connections on - are studied. A natural correspondence between sprays and a special class of homogeneous connections is presented.
In some preceding works we consider a class of Boltz optimization problems for Lagrangian mechanical systems, where it is relevant a line , regarded as determined by its (variable) curvature function of domain . Assume that the problem is regular but has an impulsive monotone character in the sense that near each of some points to is monotone and is very large. In [10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify into a structurally...
Dynamical properties of singular Lagrangian systems differ from those of classical Lagrangians of the form . Even less is known about symmetries and conservation laws of such Lagrangians and of their corresponding actions. In this article we study symmetries and conservation laws of a concrete singular Lagrangian system interesting in physics. We solve the problem of determining all point symmetries of the Lagrangian and of its Euler-Lagrange form, i.e. of the action. It is known that every point...
Currently displaying 1 –
7 of
7