Page 1

Displaying 1 – 19 of 19

Showing per page

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations of fractional order...

On Carnot's theorem in time dependent impulsive mechanics.

Stefano Pasquero (2005)

Extracta Mathematicae

We show that the validity of the Carnot's theorem about the kinetic energy balance for a mechanical system subject to an inert impulsive kinetic constraint, once correctly framed in the time dependent geometric environment for Impulsive Mechanics given by the left and right jet bundles of the space-time bundle N, is strictly related to the frame of reference used to describe the system and then it is not an intrinsic property of the mechanical system itself. We analyze in details the class of frames...

On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ , χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ ˙ , conditions (C)-i.e. (11.8) and (11.7) with 𝒬 0 -are proved to be necessary for treating satisfactorily Σ 's hyper-impulsive motions (in which positions can suffer first order discontinuities)....

On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In [1] I and II various equivalence theorems are proved; e.g. an ODE ( ) z ˙ = F ( t , z , u , u ˙ ) ( m ) with a scalar control u = u ( ) is linear w.r.t. u ˙ iff ( α ) its solution z ( u , ) with given initial conditions (chosen arbitrarily) is continuous w.r.t. u in a certain sense, or iff ( β ) z

On Lagrangian systems with some coordinates as controls

Franco Rampazzo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Σ be a constrained mechanical system locally referred to state coordinates ( q 1 , , q N , γ 1 , , γ M ) . Let ( γ ~ 1 γ ~ M ) ( ) be an assigned trajectory for the coordinates γ α and let u ( ) be a scalar function of the time, to be thought as a control. In [4] one considers the control system Σ γ ^ , which is parametrized by the coordinates ( q 1 , , q N ) and is obtained from Σ by adding the time-dependent, holonomic constraints γ α = γ ^ α ( t ) := γ ~ α ( u ( t ) ) . More generally, one can consider a vector-valued control u ( ) = ( u 1 , , u M ) ( ) which is directly identified with γ ^ ( ) = ( γ ^ 1 , , γ ^ M ) ( ) . If one denotes the momenta conjugate...

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems

Aldo Bressan, Marco Favretti (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note is the continuation of a previous paper with the same title. Here (Part II) we show that for every choice of the sequence u a ( ) , Σ a 's trajectory l a after the instant d + η a tends in a certain natural sense, as a , to a certain geodesic l of V d , with origin at q ¯ , u ¯ . Incidentally l is independent of the choice of applied forces in a neighbourhood of q ¯ , u ¯ arbitrarily prefixed.

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters

Aldo Bressan, Marco Favretti (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note (which will be followed by a second) we consider a Lagrangian system Σ (possibly without any Lagrangian function) referred to N + 1 coordinates q 1 , q N , u , with u to be used as a control, and precisely to add to Σ a frictionless constraint of the type u = u t . Let Σ 's (frictionless) constraints be represented by the manifold V t generally moving in Hertz's space. We also consider an instant d (to be used for certain limit discontinuity-properties), a point q ¯ , u ¯ of V d , a value p ¯ for Σ 's momentum conjugate...

On the application of control theory to certain problems for Lagrangian systems, and hyper-impulsive motion for these. I. Some general mathematical considerations on controllizable parameters

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In applying control (or feedback) theory to (mechanic) Lagrangian systems, so far forces have been generally used as values of the control u ( ) . However these values are those of a Lagrangian co-ordinate in various interesting problems with a scalar control u = u ( ) , where this control is carried out physically by adding some frictionless constraints. This pushed the author to consider a typical Lagrangian system Σ , referred to a system χ of Lagrangian co-ordinates, and to try and write some handy conditions,...

On the determination of the potential function from given orbits

L. Alboul, J. Mencía, R. Ramírez, N. Sadovskaia (2008)

Czechoslovak Mathematical Journal

The paper deals with the problem of finding the field of force that generates a given ( N - 1 )-parametric family of orbits for a mechanical system with N degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov’s problem. We apply the obtained results to generalize the...

On the differential equations of the classical and relativistic dynamics for certain generalised Lagrangian functions

Antonio Pignedoli (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

One studies the differential equations of the movement of certain classical and relativistic systems for some special Lagrangian functions. One considers particularly the case in which the problem presents cyclic coordinates. Some electrodynamical applications are studied.

On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková (1993)

Mathematica Bohemica

Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

On the Lagrange-Souriau form in classical field theory

D. R. Grigore, Octavian T. Popp (1998)

Mathematica Bohemica

The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric...

Currently displaying 1 – 19 of 19

Page 1