The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present the notion of scattering monodromy for a two degree of freedom hyperbolic oscillator and apply this idea to determine the Picard-Lefschetz monodromy of the isolated singular point of a quadratic function of two complex variables.
The spherical version of the two-dimensional central harmonic oscillator, as well as the spherical Kepler (Schrödinger) potential, are superintegrable systems with quadratic constants of motion. They belong to two different spherical "Smorodinski-Winternitz" families of superintegrable potentials. A new superintegrable oscillator have been recently found in S². It represents the spherical version of the nonisotropic 2:1 oscillator and it also belongs to a spherical family of quadratic superintegrable...
Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.
We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.
Currently displaying 1 –
9 of
9