Previous Page 3

Displaying 41 – 52 of 52

Showing per page

Structures symplectiques singulières génériques

Spyros N. Pnevmatikos (1984)

Annales de l'institut Fourier

Soit M une variété différentiable de dimension paire munie d’une 2-forme différentielle fermée générique Ω . L’apparition éventuelle d’un lieu de dégénérescence Σ ( Ω ) du rang de Ω est l’obstacle à ce que ( M , Ω ) soit une structure symplectique. Nous étudions les propriétés géométriques de Σ ( Ω ) et nous caractérisons l’algèbre des hamiltoniennes admissibles de ( M , Ω ) i.e. les fonctions différentiables h qui possèdent un champ hamiltonien X h sur M .

Sul problema del rimbalzo in un insieme convesso

Marco Degiovanni (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper we seek the bounce trajectories in a convex set which assume assigned positions in two fixed time instants. We find sufficient conditions in order to obtain the existence of infinitely many bounce trajectories.

Waves of excitations in heterogeneous annular region, asymmetric arrangement

András Volford, Peter Simon, Henrik Farkas (1999)

Banach Center Publications

This paper deals with the propagation of waves around a circular obstacle. The medium is heterogeneous: the velocity is smaller in the inner region and greater in the outer region. The interface separating the two regions is also circular, and the obstacle is located eccentrically inside it. The different front portraits are classified.

Waves of excitations in heterogeneous annular region II. Strong asymmetry

Kristóf Kály-Kullai, András Volford, Henrik Farkas (2003)

Banach Center Publications

Excitation wave propagation in a heterogeneous medium around a circular obstacle is investigated, when the obstacle is located very eccentrically with respect to the interfacial circle separating the slow inner and the fast outer region. Qualitative properties of the permanent wave fronts are described, and the calculated wave forms are presented.

Currently displaying 41 – 52 of 52

Previous Page 3