On periodic solution of a nonlinear beam equation
the existence of an -periodic solution of the equation sarisfying the boundary conditions is proved for every -periodic function .
the existence of an -periodic solution of the equation sarisfying the boundary conditions is proved for every -periodic function .
The paper deals with the existence of time-periodic solutions to the beam equation, in which terms expressing torsion and damping are also considered. The existence of periodic solutions is proved in the cas of time-periodic outer forces by means of an apriori estimate and the Fourier method.
This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.
Let be a function defined on the set of all by matrices that is invariant with respect to left and right multiplications of its argument by proper orthogonal matrices. The function can be represented as a function of the signed singular values of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of in terms of its representation
The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome...
Numerical simulations of time-dependent behaviour of advances structures need the analysis of systems of partial differential equations of hyperbolic type, whose semi-discretization, using the Fourier multiplicative decomposition together with the finite element or similar techniques, leads to large sparse systems of ordinary differential equations. Effective and robust methods for numerical evaluation of their solutions in particular time steps are required; thus still new computational schemes...
In this paper we study bounds for the off-diagonal elements of the homogenized tensor for the stationary heat conduction problem. We also state that these bounds are sharp by proving a formula for the homogenized tensor in the case of laminate structures.