On the Construction of Optimal Mixed Finite Element Methods for the Linear Elasticity Problem.
The Mori-Tanaka effective stiffness tensor is shown to be asymmetric in general. This tensor is proven to be symmetric for composites with isotropic inclusions, or with spherical reinforcements. Symmetry is also proven for the case of unidirectional fibers, of any shape and material. The Mori-Tanaka theory is shown to yield physically unacceptable predictions at the high concentration limit.
The domain of influence, proposed by Cowin and Nunziato, is extended to cover the thermoelasticity of bodies with voids. We prove that for a finite time the displacement field , the temperature and the change in volume fraction generate no disturbance outside a bounded domain .
In questo lavoro viene studiato il comportamento dinamico di una piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presentano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo delle equazioni del moto. Si istituiscono infine dei confronti con risultati...
Mathematics Subject Classification: 26A33In the process of constructing empirical mathematical models of physical phenomena using the fractional calculus, investigators are usually faced with the choice of which definition of the fractional derivative to use, the Riemann-Liouville definition or the Caputo definition. This investigation presents the case that, with some minimal restrictions, the two definitions produce completely equivalent mathematical models of the linear viscoelastic phenomenon....
The existence and the unicity of a weak solution of the boundary value problem for a shallow shell reinforced with stiffening ribs is proved by the direct variational method. The boundary value problem is solved in the space , on which the corresponding bilinear form is coercive. A finite element method for numerical solution is introduced. The approximate solutions converge to a weak solution in the space .
In this paper the main problem of classical elastostatics with non absolutely continuous data is considered. Necessary and sufficient conditions under which the energy integral is finite are given.