Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Collisions and fractures: a model in S B D

Elena Bonetti, Michel Frémond (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate collisions (assumed to be instantaneous) and fractures of three-dimensional solids. Equations of motion and constitutive laws provide a set of partial differential equations, whose corresponding variational problem may be solved in the space of special functions with bounded deformations ( S B D ), exploiting the direct method of calculus of variations.

Comparison of crack propagation criteria in linear elastic fracture mechanics

Mikeš, Karel (2015)

Programs and Algorithms of Numerical Mathematics

In linear fracture mechanics, it is common to use the local Irwin criterion or the equivalent global Griffith criterion for decision whether the crack is propagating or not. In both cases, a quantity called the stress intensity factor can be used. In this paper, four methods are compared to calculate the stress intensity factor numerically; namely by using the stress values, the shape of a crack, nodal reactions and the global energetic method. The most accurate global energetic method is used to...

Comportamiento asintótico de las ecuaciones de la termoelasticidad generalizada.

Alberto Falqués Serra (1982)

Stochastica

In this paper it is first shown that the linear evolution equations for a generalized thermoelastic solid generate a C0 semigroup. Next an analysis of the long time evolution behaviour yields the some results known for classical thermoelasticity: generically, the natural state is asymptotically stable.

Contact between elastic bodies. I. Continuous problems

Jaroslav Haslinger, Ivan Hlaváček (1980)

Aplikace matematiky

Problems of a unilateral contact between bounded bodies without friction are considered within the range of two-dimensional linear elastostatics. Two classes of problems are distinguished: those with a bounded contact zone and with an enlargign contact zone. Both classes can be formulated in terms of displacements by means of a variational inequality. The proofs of existence of a solution are presented and the uniqueness discussed.

Contact between elastic bodies. II. Finite element analysis

Jaroslav Haslinger, Ivan Hlaváček (1981)

Aplikace matematiky

The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.

Contact between elastic bodies. III. Dual finite element analysis

Jaroslav Haslinger, Ivan Hlaváček (1981)

Aplikace matematiky

The problem of a unilateral contact between elastic bodies with an apriori bounded contact zone is formulated in terms of stresses via the principle of complementary energy. Approximations are defined by means of self-equilibriated triangular block-elements and an L 2 -error estimate is proven provided the exact solution is regular enough.

Contact between elastic perfectly plastic bodies

Jaroslav Haslinger, Ivan Hlaváček (1982)

Aplikace matematiky

If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.

Contact problem of two elastic bodies. I

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact problem of two elastic bodies. II

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact problem of two elastic bodies. III

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Convergence of dual finite element approximations for unilateral boundary value problems

Ivan Hlaváček (1980)

Aplikace matematiky

A semi-coercive problem with unilateral boundary conditions of the Signoriti type in a convex polygonal domain is solved on the basis of a dual variational approach. Whereas some strong regularity of the solution has been assumed in the previous author’s results on error estimates, no assumption of this kind is imposed here and still the L 2 -convergence is proved.

Currently displaying 1 – 20 of 24

Page 1 Next