Displaying 21 – 40 of 41

Showing per page

The problem of dynamic cavitation in nonlinear elasticity

Jan Giesselmann, Alexey Miroshnikov, Athanasios E. Tzavaras (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.

The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity

Jarosław L. Bojarski (2005)

Applicationes Mathematicae

The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations BV(Ω)) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.

Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition

Mario Durán, Eduardo Godoy, Jean-Claude Nédélec (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work presents an effective and accurate method for determining, from a theoretical and computational point of view, the time-harmonic Green's function of an isotropic elastic half-plane where an impedance boundary condition is considered. This method, based on the previous work done by Durán et al. (cf. [Numer. Math.107 (2007) 295–314; IMA J. Appl. Math.71 (2006) 853–876]) for the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques, which has an important...

Currently displaying 21 – 40 of 41