Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Multiscale expansion and numerical approximation for surface defects⋆

V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, S. Tordeux, G. Vial (2011)

ESAIM: Proceedings

This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...

Non-smoothness in the asymptotics of thin shells and propagation of singularities. Hyperbolic case

Philippe Karamian, Jacqueline Sanchez-Hubert, Évariste Sanchez Palencia (2002)

International Journal of Applied Mathematics and Computer Science

We consider the limit behaviour of elastic shells when the relative thickness tends to zero. We address the case when the middle surface has principal curvatures of opposite signs and the boundary conditions ensure the geometrical rigidity. The limit problem is hyperbolic, but enjoys peculiarities which imply singularities of unusual intensity. We study these singularities and their propagation for several cases of loading, giving a somewhat complete description of the solution.

Numerical study of acoustic multiperforated plates

Abderrahmane Bendali, M’Barek Fares, Sophie Laurens, Sébastien Tordeux (2012)

ESAIM: Proceedings

It is rather classical to model multiperforated plates by approximate impedance boundary conditions. In this article we would like to compare an instance of such boundary conditions obtained through a matched asymptotic expansions technique to direct numerical computations based on a boundary element formulation in the case of linear acoustic.

On Asymptotic Theory of Beams, Plates and Shells

L.A. Aghalovyan, M.L. Aghalovyan (2016)

Curved and Layered Structures

Bases of asymptotic theory of beams, plates and shells are stated. The comparison with classic theory is conducted. New classes of thin bodies problems, for which hypotheses of classic theory are not applicable, are considered. By the asymptotic method effective solutions of these problems are obtained. The effectiveness of the asymptotic method for finding solutions of as static, as well as dynamic problems of beams, plates and shells is shown.

On the accuracy of Reissner–Mindlin plate model for stress boundary conditions

Sheng Zhang (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

For a plate subject to stress boundary condition, the deformation determined by the Reissner–Mindlin plate bending model could be bending dominated, transverse shear dominated, or neither (intermediate), depending on the load. We show that the Reissner–Mindlin model has a wider range of applicability than the Kirchhoff–Love model, but it does not always converge to the elasticity theory. In the case of bending domination, both the two models are accurate. In the case of transverse shear domination, the...

On the Asymptotic Analys of a Non-Symmetric Bar

Abderrazzak Majd (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the 3-D elasticity problem in the case of a non-symmetric heterogeneous rod. The asymptotic expansion of the solution is constructed. The coercitivity of the homogenized equation is proved. Estimates are derived for the difference between the truncated series and the exact solution.

On the change of energy caused by crack propagation in 3-dimensional anisotropic solids

Martin Steigemann, Maria Specovius-Neugebauer (2014)

Mathematica Bohemica

Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...

The regularisation of the N -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N -well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let A F denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition D u = F on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ϵ ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite element approximation to the N -well problem without surface...

The regularisation of the N-well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N-well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let AF denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition Du=F on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ϵ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite element approximation to the N-well problem without...

Currently displaying 21 – 31 of 31

Previous Page 2