The three-dimensional problem of statics of the elastic mixture theory with displacements given on the boundary.
We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent...
A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction depending on the spatial variable is analysed. It is shown that a solution exists for any and is globally unique if is sufficiently small. The Lipschitz continuity of this unique solution as a function of as well as a function of the load vector is obtained. Furthermore, local uniqueness of solutions for arbitrary is studied. The question of existence of locally Lipschitz-continuous...
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
Les équations bidimensionnelles d'une coque non linéairement élastique «en flexion» ont été récemment justifiées par V. Lods et B. Miara par la méthode des développements asymptotiques formels appliquée aux équations de l'élasticité non linéaire tridimensionnelle. Ces équations se mettent sous la forme d'un problème de point critique d'une fonctionnelle dont l'intégrande est une expression quadratique en termes de la différence exacte entre les tenseurs de courbure des surfaces déformée et non déformée,...
This work is concerned with the equilibrium configurations of elastic structures in contact with Coulomb friction. We obtain a variational formulation of this equilibrium problem. Then we propose sufficient conditions for the existence of an infinity of equilibrium configurations with arbitrary small friction coefficients. We illustrate the result in two space dimensions with a simple example.