Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Analysis and numerical approximation of an elastic frictional contact problem with normal compliance

Weimin Han, Mircea Sofonea (1999)

Applicationes Mathematicae

We consider the problem of frictional contact between an elastic body and an obstacle. The elastic constitutive law is assumed to be nonlinear. The contact is modeled with normal compliance and the associated version of Coulomb's law of dry friction. We present two alternative yet equivalent weak formulations of the problem, and establish existence and uniqueness results for both formulations using arguments of elliptic variational inequalities and fixed point theory. Moreover, we show the continuous...

Analysis and Numerical Approximation of an Electro-elastic Frictional Contact Problem

El. Essoufi, El. Benkhira, R. Fakhar (2010)

Mathematical Modelling of Natural Phenomena

We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...

Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal

Eric Bonnetier, Richard S. Falk, Michael A. Grinfeld (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The equilibrium configurations of a one-dimensional variational model that combines terms expressing the bulk energy of a deformable crystal and its surface energy are studied. After elimination of the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional of a single function, the thickness. Depending on a parameter which strengthens one of the terms comprising the energy at the expense of the other, it is shown that this functional may have a stable absolute...

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a viscoelastic antiplane contact problem with slip-dependent friction

Thierry-Vincent Hoarau-Mantel, Andaluzia Matei (2002)

International Journal of Applied Mathematics and Computer Science

We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities....

Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems

Jozef Kačur, Alexander Ženíšek (1986)

Aplikace matematiky

The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler’s backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish...

Analysis of crack singularities in an aging elastic material

Martin Costabel, Monique Dauge, SergeïA. Nazarov, Jan Sokolowski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a quasistatic system involving a Volterra kernel modelling an hereditarily-elastic aging body. We are concerned with the behavior of displacement and stress fields in the neighborhood of cracks. In this paper, we investigate the case of a straight crack in a two-dimensional domain with a possibly anisotropic material law. We study the asymptotics of the time dependent solution near the crack tips. We prove that, depending on the regularity of the material law and the Volterra kernel,...

Approximation and numerical solution of contact problems with friction

Jaroslav Haslinger, Miroslav Tvrdý (1983)

Aplikace matematiky

The present paper deals with numerical solution of the contact problem with given friction. By a suitable choice of multipliers the whole problem is transformed to that of finding a saddle-point of the Lagrangian function on a certain convex set K × Λ . The approximation of this saddle-point is defined, the convergence is proved and the rate of convergence established. For the numerical realization Uzawa’s algorithm is used. Some examples are given in the conclusion.

Asymptotic Analysis of the Shape and Composition of Alloy Islands in Epitaxial Solid Films

M. Blanariu, B. J. Spencer (2008)

Mathematical Modelling of Natural Phenomena

We consider the formation of solid drops (“islands”) occurring in the growth of strained solid films. Beginning from a detailed model for the growth of an alloy film that incorporates the coupling between composition, elastic stress and the morphology of the free boundary, we develop an asymptotic description of the shape and compositional nonuniformity of small alloy islands grown at small deposition rates. A key feature of the analysis is a “thin domain” scaling in the island which enables recasting...

Currently displaying 41 – 60 of 60

Previous Page 3