Displaying 221 – 240 of 684

Showing per page

Finite elements methods for solving viscoelastic thin plates

Helena Růžičková, Alexander Ženíšek (1984)

Aplikace matematiky

The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by C 1 -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.

Free vibrations for the equation of a rectangular thin plate

Eduard Feireisl (1988)

Aplikace matematiky

In the paper, we deal with the equation of a rectangular thin plate with a simply supported boundary. The restoring force being an odd superlinear function of the vertical displacement, the existence of infinitely many nonzero time-periodic solutions is proved.

Frictional contact of an anisotropic piezoelectric plate

Isabel N. Figueiredo, Georg Stadler (2009)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...

Geometry of the free-sliding Bernoulli beam

Giovanni Moreno, Monika Ewa Stypa (2016)

Communications in Mathematics

If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application,...

Global asymptotic stabilisation of an active mass damper for a flexible beam

Laura Menini, Antonio Tornambè, Luca Zaccarian (1999)

Kybernetika

In this paper, a finite dimensional approximated model of a mechanical system constituted by a vertical heavy flexible beam with lumped masses placed along the beam and a mobile mass located at the tip, is proposed; such a model is parametric in the approximation order, so that a prescribed accuracy in the representation of the actual system can be easily obtained with the proposed model. The system itself can be understood as a simple representation of a building subject to transverse vibrations,...

Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping

Abderrahmane Zaraï, Nasser-eddine Tatar (2010)

Archivum Mathematicum

A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].

Currently displaying 221 – 240 of 684