Displaying 61 – 80 of 326

Showing per page

A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three dimensional finite element method for biological active soft tissue Formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces

David Doyen, Alexandre Ern, Serge Piperno (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented Lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixed finite element approximations to the stationarity conditions of the three-field augmented Lagrangian....

A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi, Umberto Perego (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...

Adaptive finite element relaxation schemes for hyperbolic conservation laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

Algebraic domain decomposition solver for linear elasticity

Aleš Janka (1999)

Applications of Mathematics

We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori...

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis


In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori error...

An adaptive finite element method for solving a double well problem describing crystalline microstructure

Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent...

An analysis of the boundary layer in the 1D surface Cauchy–Born model

Kavinda Jayawardana, Christelle Mordacq, Christoph Ortner, Harold S. Park (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The surface Cauchy–Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is 𝒪(1) in the mesh size; however, we are able to identify an alternative “approximation parameter” – the stiffness of the interaction potential – with respect to which the relative error...

An analysis of the boundary layer in the 1D surface Cauchy–Born model∗

Kavinda Jayawardana, Christelle Mordacq, Christoph Ortner, Harold S. Park (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The surface Cauchy–Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is 𝒪(1) in the mesh size; however, we are able to identify an alternative “approximation parameter” – the stiffness of the interaction potential – with respect to which the relative error...

Currently displaying 61 – 80 of 326