Displaying 301 – 320 of 3470

Showing per page

About steady transport equation I – L p -approach in domains with smooth boundaries

Antonín Novotný (1996)

Commentationes Mathematicae Universitatis Carolinae

We investigate the steady transport equation λ z + w · z + a z = f , λ > 0 in various domains (bounded or unbounded) with smooth noncompact boundaries. The functions w , a are supposed to be small in appropriate norms. The solution is studied in spaces of Sobolev type (classical Sobolev spaces, Sobolev spaces with weights, homogeneous Sobolev spaces, dual spaces to Sobolev spaces). The particular stress is put onto the problem to extend the results to as less regular vector fields w , a , as possible (conserving the requirement of...

About the decay of surface waves on viscous fluids without surface tension

Gerhard Ströhmer (2003)

Banach Center Publications

We study the decay of the motions of a viscous fluid subject to gravity without surface tension with a free boundary at the top. We show that the solutions of the linearization about the equilibrium state decay, but not exponentially in a uniform manner. We also discuss the consequences of this for the non-linear equations.

Abstracts of theses in mathematics

(2000)

Commentationes Mathematicae Universitatis Carolinae

Žemlička, Jan: Structure of steady rings. Zemek, Martin: On some aspects of subdifferentiality of functions on Banach spaces. Hlubinka, Daniel: Construction of Markov kernels with application for moment problem solution. Somberg, Petr: Properties of the BGG resolution on the spheres. Krump, Lukáš: Construction of Bernstein-Gelfand-Gelfand for almost hermitian symmetric structures. Kolář, Jan: Simultaneous extension operators. Porosity.

Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions

Simone Deparis, Miguel Angel Fernández, Luca Formaggia (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure....

Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions

Simone Deparis, Miguel Angel Fernández, Luca Formaggia (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of...

Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

Xinlong Feng, Zhifeng Weng, Hehu Xie (2014)

Applications of Mathematics

This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error...

Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method

Fabien Casenave, Alexandre Ern, Tony Lelièvre (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Currently displaying 301 – 320 of 3470