Page 1 Next

Displaying 1 – 20 of 69

Showing per page

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a model system for the oblique interaction of internal gravity waves

Jean-Claude Saut, Nikolay Tzvetkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We give local and global well-posedness results for a system of two Kadomtsev-Petviashvili (KP) equations derived by R. Grimshaw and Y. Zhu to model the oblique interaction of weakly nonlinear, two dimensional, long internal waves in shallow fluids. We also prove a smoothing effect for the amplitudes of the interacting waves. We use the Fourier transform restriction norms introduced by J. Bourgain and the Strichartz estimates for the linear KP group. Finally we extend the result of [3] for lower...

On evolution Galerkin methods for the Maxwell and the linearized Euler equations

Mária Lukáčová-Medviďová, Jitka Saibertová, Gerald G. Warnecke, Yousef Zahaykah (2004)

Applications of Mathematics

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...

Currently displaying 1 – 20 of 69

Page 1 Next