Le problème des poches de tourbillon en dimension trois d'espace
Les effets dispersifs permettent de passer à la limite dans le système d’Euler compressible 2-D isentropique, quand le nombre de Mach tend vers zéro, même si les données initiales ne sont pas uniformément régulières.Ceci mène à des résultats de convergence vers des solutions non régulières du système d’Euler incompressible, comme les poches de tourbillon ou les solutions de Yudovich.
The free oscillations of the gate system proposed [1,2] to defend the Venice Lagoon from the phenomenon of high water are analyzed. Free transverse modes of oscillations exist which may be either subharmonic or synchronous with respect to typical waves in the Adriatic sea. This result points out the need to examine whether such modes may be excited as a result of a Mathieu type resonance occurring when the gate system is forced by incident waves. The latter investigation is performed in part 2 of...
We show that the transverse subharmonic modes characterizing the free oscillations of the gate system proposed to defend the Venice Lagoon from the phenomenon of high water (see Note I[1]) can be excited when the gate system is forced by plane monochromatic waves orthogonal to the gates with the typical characteristics of large amplitude waves in the Adriatic sea close to the lagoon inlets. A linear stability analysis of the coupled motion of the system sea-gates-lagoon reveals that for typical...
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data , and for and any . The initial regularity of the micro-rotational velocity is weaker than velocity of the fluid .
In this note, we give an overview of the authors’ paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kučera [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of...