Page 1 Next

Displaying 1 – 20 of 28

Showing per page

The dock problem revisited.

Chakrabarti, A., Mandal, B.N., Gayen, Rupanwita (2005)

International Journal of Mathematics and Mathematical Sciences

The Eulerian limit and the slip boundary conditions-admissible irregularity of the boundary

Piotr Bogusław Mucha (2005)

Banach Center Publications

We investigate the inviscid limit for the stationary Navier-Stokes equations in a two dimensional bounded domain with slip boundary conditions admitting nontrivial inflow across the boundary. We analyze admissible regularity of the boundary necessary to obtain convergence to a solution of the Euler system. The main result says that the boundary of the domain must be at least C²-piecewise smooth with possible interior angles between regular components less than π.

The nappe profile of a free overfall

Enrico Marchi (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The phenomenon of the free overfall at the sharp drop of a channel bed has been deeply investigated experimentally since the pioneering work of Rouse (1933). Its behaviour is well known at least in the usual case of a wide rectangular channel. However, no complete theoretical solution has yet been obtained. Assuming the steady flow to be two-dimensional, irrotational and frictionless, an analytical solution for the flow field is obtained accounting for the presence of two free boundaries. By applying...

The Singularity Expansion Method applied to the transient motions of a floating elastic plate

Christophe Hazard, François Loret (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles...

The vortex method for 2D ideal flows in the exterior of a disk

Diogo Arsénio, Emmanuel Dormy, Christophe Lacave (2014)

Journées Équations aux dérivées partielles

The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential equations. Such a method is well justified in the full plane, thanks to the explicit representation formulas of Biot and Savart. In an exterior domain, we also replace the impermeable boundary by a collection of point vortices generating the circulation...

Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations

Anne de Bouard, Arnaud Debussche, Laurent Di Menza (2001)

Journées équations aux dérivées partielles

We describe several results obtained recently on stochastic nonlinear Schrödinger equations. We show that under suitable smoothness assumptions on the noise, the nonlinear Schrödinger perturbed by an additive or multiplicative noise is well posed under similar assumptions on the nonlinear term as in the deterministic theory. Then, we restrict our attention to the case of a focusing nonlinearity with critical or supercritical exponent. If the noise is additive, smooth in space and non degenerate,...

Currently displaying 1 – 20 of 28

Page 1 Next