Scattering for 1D cubic NLS and singular vortex dynamics
We study the stability of self-similar solutions of the binormal flow, which is a model for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions form a family of evolving regular curves in that develop a singularity in finite time, indexed by a parameter . We consider curves that are small regular perturbations of for a fixed time . In particular, their curvature is not vanishing at infinity, so we are not in the context of known results of local existence...