Page 1

Displaying 1 – 20 of 20

Showing per page

Central-upwind schemes for the Saint-Venant system

Alexander Kurganov, Doron Levy (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central schemes...

Central-Upwind Schemes for the Saint-Venant System

Alexander Kurganov, Doron Levy (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central...

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Comparaison entre modèles d'ondes de surface en dimension 2

Youcef Mammeri (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of the surface of a fluid by a wavemaker

Lionel Rosier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in Lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.

Control of underwater vehicles in inviscid fluids

Rodrigo Lecaros, Lionel Rosier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability...

Controllability of 3D incompressible Euler equations by a finite-dimensional external force

Hayk Nersisyan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the control system associated with the incompressible 3D Euler system. We show that the velocity field and pressure of the fluid are exactly controllable in projections by the same finite-dimensional control. Moreover, the velocity is approximately controllable. We also prove that 3D Euler system is not exactly controllable by a finite-dimensional external force.

Controllability of 3D low Reynolds number swimmers

Jérôme Lohéac, Alexandre Munnier (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the flow of which is governed by the stationary Stokes equations. This model is relevant for studying the locomotion of microorganisms or micro robots for which the inertia effects can be neglected. Our first main contribution is to prove that any such microswimmer has the ability to track, by performing a sequence of shape changes, any given trajectory in the fluid. We show that, in addition, this can be done...

Currently displaying 1 – 20 of 20

Page 1