Fysikalní příspěvek k nauce o veličinách imaginárních
2000 Mathematics Subject Classification: 35P25, 35R30, 58J50.Using the free-space translation representation (modified Radon transform) of Lax and Phillips in odd dimensions, it is shown that the generalized backscattering transform (so outgoing angle w = Sq in terms of the incoming angle with S orthogonal and Id-S invertible) may be further restricted to give an entire, globally Fredholm, operator on appropriate Sobolev spaces of potentials with compact support. As a corollary we show that the...
This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integral equations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted as generalizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch....
We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrödinger equations with Gauge invariant power-law nonlinearities and nonlocal perturbations. The model includes the Davey-Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variants. Our analysis reveals a new localization phenomenon for nonlocal perturbations in the high frequency regime and allows us to infer strong instability results on the Cauchy problem in negative order Sobolev...
We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optimal energy estimate in Sobolev spaces showing that losses of derivatives must occur from the source terms...
After a short introduction on micromagnetism, we will focus on a scalar micromagnetic model. The problem, which is hyperbolic, can be viewed as a problem of Hamilton-Jacobi, and, similarly to conservation laws, it admits a kinetic formulation. We will use both points of view, together with tools from geometric measure theory, to prove the rectifiability of the singular set of micromagnetic configurations.
In this paper we give a proof of the existence and uniqueness of smooth solutions for the nonlinear semiconductor Boltzmann equation. The method used allows to obtain global existence in time and uniqueness for dimensions 1 and 2. For dimension 3 we can only assure local existence in time and uniqueness. First, we define a sequence of solutions for a linearized equation and then, we prove the strong convergence of the sequence in a suitable space. The metod relies on the use of interpolation estimates...
We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
We describe both the classical Lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
Poisson and Poisson-Boltzmann equations (PE and PBE) are widely used in molecular modeling to estimate the electrostatic contribution to the free energy of a system. In such applications, PE often needs to be solved multiple times for a large number of system configurations. This can rapidly become a highly demanding computational task. To accelerate such calculations we implemented a graphical processing unit (GPU) PE solver described in this work. The GPU solver performance is compared to that...
We discuss the propagation of electromagnetic waves of a special form through an inhomogeneous isotropic medium which has a cylindrical symmetry and a nonlinear dielectric response. For the case where this response is of self-focusing type the problem is treated in [1]. Here we continue this study by dealing with a defocusing dielectric response. This tends to inhibit the guidance properties of the medium and so guidance can only be expected provided that the cylindrical stratification is such that...
We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...