The search session has expired. Please query the service again.

Displaying 321 – 340 of 617

Showing per page

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical simulations of the focal spot generated by a set of laser beams : LMJ⋆⋆⋆

Antoine Bourgeade, Boniface Nkonga (2011)

ESAIM: Proceedings

In order to get the fusion of small capsules containing a deuterium-tritium nuclear fuel, the MegaJoule laser (LMJ) will focus a large number of laser beams inside a cylinder (Hohlraum) which contains the fusion capsule. In order to control this process we have to know as well as possible the electromagnetic field created by the laser beams on both Hohlraum’s apertures. This article describes a numerical tool which computes this electromagnetic field...

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

Numerical study of self-focusing solutions to the Schrödinger-Debye system

Christophe Besse, Brigitte Bidégaray (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.

Numerical study of self-focusing solutions to the Schrödinger-Debye system

Christophe Besse, Brigitte Bidégaray (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.

Numerical treatment of 3-dimensional potential problem

Vladimír Drápalík, Vladimír Janovský (1988)

Aplikace matematiky

Assuming an incident wave to be a field source, we calculate the field potential in a neighborhood of an inhomogeneous body. This problem which has been formulated in 𝐑 3 can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulated on a sphere. Then the potential satisfies a well posed boundary value problem in a ball containing the body. A numerical approximation is suggested and its convergence is analyzed.

Oko redukované

Vilém Baudys (1877)

Časopis pro pěstování mathematiky a fysiky

Currently displaying 321 – 340 of 617