Filter theory and covering law
The present paper deals with mutually unbiased bases for systems of qudits in dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of mutually unbiased bases is given for where is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group . A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case...
Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.
Quantum logic is a particular example of a fuzzy quantum logic. QL is semantically characterized by the class of all quantum MV algebras. The standard quantum MV algebra is based on the set of all effects in a Hilbert space. From the physical point of view, effects represent physical properties that may be noisy and ambiguous.
We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra is a union of generalized MV-effect algebras and...
We study classical spin networks with group SU. In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.
In it was shown that a (real) signed measure on a cyclic coarse-grained quantum logic can be extended, as a signed measure, over the entire power algebra. Later () this result was re-proved (and further improved on) and, moreover, the non-negative measures were shown to allow for extensions as non-negative measures. In both cases the proof technique used was the technique of linear algebra. In this paper we further generalize the results cited by extending group-valued measures on cyclic coarse-grained...
General quantum measurements are represented by instruments. In this paper the mathematical formalization is given of the idea that an instrument is a channel which accepts a quantum state as input and produces a probability and an a posteriori state as output. Then, by using mutual entropies on von Neumann algebras and the identification of instruments and channels, many old and new informational inequalities are obtained in a unified manner. Such inequalities involve various quantities which characterize...
In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...