On the origin of the harmonic term in noncommutative quantum field theory.
Previous Page 2
De Goursac, Axel (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
C. Duval (1981)
Annales de l'I.H.P. Physique théorique
K. Tahir Shah (1976)
Annales de l'I.H.P. Physique théorique
Rudolf Haag, Izumi Ojima (1996)
Annales de l'I.H.P. Physique théorique
A. Pordt, T. Reisz (1991)
Annales de l'I.H.P. Physique théorique
Hellmut Baumgärtel (1984)
Annales de l'I.H.P. Physique théorique
Dao Vong Duc, Nguyen Thi Hong (1982)
Annales de l'I.H.P. Physique théorique
H. J. Borchers (1995)
Annales de l'I.H.P. Physique théorique
Marvin Knopp, Geoffrey Mason (2003)
Acta Arithmetica
Martins, Joao Faria, Porter, Timothy (2007)
Theory and Applications of Categories [electronic only]
Blaschke, Daniel N., Rofner, Arnold, Sedmik, René I.P. (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Kaufmann, Ralph M. (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Ilona Królak (2010)
Bulletin of the Polish Academy of Sciences. Mathematics
We present a new proof of Janson’s strong hypercontractivity inequality for the Ornstein-Uhlenbeck semigroup in holomorphic algebras associated with CAR (canonical anticommutation relations) algebras. In the one generator case we calculate optimal bounds for t such that is a contraction as a map for arbitrary p ≥ 2. We also prove a logarithmic Sobolev inequality.
Pierre-Yves Jeanne (2000/2001)
Séminaire Équations aux dérivées partielles
Stanislaw Goldstein, Adam Paszkiewicz (1990)
Monatshefte für Mathematik
Previous Page 2