Scattering and spectral theory for Stark Hamiltonians in one dimension.
Page 1 Next
Yang Liu (1993)
Mathematica Scandinavica
Lech Zielinski (1997)
Annales de l'I.H.P. Physique théorique
Tanya Christiansen, M. S. Joshi (2003)
Annales de l’institut Fourier
The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.
Christian Gérard, Izabella Łaba (1996)
Annales de l'institut Fourier
We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians;...
K. Fredenhagen, M. R. Gaberdiel (1996)
Annales de l'I.H.P. Physique théorique
Robert Alicki, Alberto Frigerio (1983)
Annales de l'I.H.P. Physique théorique
D. R. Yafaev (1984)
Annales de l'I.H.P. Physique théorique
Yafaev, D. (1998)
Documenta Mathematica
A. Iantchenko, E. Korotyaev (2010)
Mathematical Modelling of Natural Phenomena
We consider the zigzag half-nanotubes (tight-binding approximation) in a uniform magnetic field which is described by the magnetic Schrödinger operator with a periodic potential plus a finitely supported perturbation. We describe all eigenvalues and resonances of this operator, and theirs dependence on the magnetic field. The proof is reduced to the analysis of the periodic Jacobi operators on the half-line with finitely supported perturbations.
Karl-Theodor Sturm (1992)
Manuscripta mathematica
Peter D. Hislop, Shu Nakamura (1989)
Annales de l'I.H.P. Physique théorique
Christian Gérard (1989)
Journées équations aux dérivées partielles
Armin Kargol (1999)
Annales de l'I.H.P. Physique théorique
Hideo Tamura (1995)
Annales de l'I.H.P. Physique théorique
D. Iagolnitzer (1978/1979)
Séminaire Équations aux dérivées partielles (Polytechnique)
Justin Holmer, Jeremy Marzuola, Maciej Zworski (2006)
Journées Équations aux dérivées partielles
Venkatesulu, M., Baruah, Pallav Kumar (1996)
Journal of Applied Mathematics and Stochastic Analysis
Duviryak, Askold (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Andrew Hassell, Richard Melrose, András Vasy (2000/2001)
Séminaire Équations aux dérivées partielles
Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri (2011)
Annales de l’institut Fourier
We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...
Page 1 Next