Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Resolution of the time dependent Pn equations by a Godunov type scheme having the diffusion limit

Patricia Cargo, Gérald Samba (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Pn model to approximate the time dependent transport equation in one dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation. We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it has to give the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical scheme proposed is an extension of the Godunov type scheme proposed by Gosse to solve the P1 model...

Resonance in Preisach systems

Pavel Krejčí (2000)

Applications of Mathematics

This paper deals with the asymptotic behavior as t of solutions u to the forced Preisach oscillator equation w ¨ ( t ) + u ( t ) = ψ ( t ) , w = u + 𝒫 [ u ] , where 𝒫 is a Preisach hysteresis operator, ψ L ( 0 , ) is a given function and t 0 is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function ψ (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...

Resonant delocalization for random Schrödinger operators on tree graphs

Michael Aizenman, Simone Warzel (2013)

Journal of the European Mathematical Society

We analyse the spectral phase diagram of Schrödinger operators T + λ V on regular tree graphs, with T the graph adjacency operator and V a random potential given by i i d random variables. The main result is a criterion for the emergence of absolutely continuous ( a c ) spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials a c spectrum appears at arbitrarily weak disorder ( λ 1 ) in an energy regime which extends beyond the spectrum of T . Incorporating...

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

Role of Molecular Chaos in Granular Fluctuating Hydrodynamics

G. Costantini, A. Puglisi (2011)

Mathematical Modelling of Natural Phenomena

We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse velocity field during the cooling state of a homogeneous granular gas. We are interested in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD, deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random process), where Molecular...

RTC-method for the control of nuclear reactor power

Wajdi A. Ratemi (1998)

Kybernetika

In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power control is presented. The concept is demonstrated for a reactor model with one group of delayed neutrons, where the reactivity trace curve is simply a closed form exponential solution of the RTC-differential equation identifier. An extended reactor model of multigroup (six groups) of delayed neutrons is discussed for power control using the RTC-method which is based on numerical solution of the governing equation...

Currently displaying 41 – 56 of 56

Previous Page 3