Displaying 481 – 500 of 591

Showing per page

Symmetries of an extended Hubbard Model

Bianca Cerchiai, Peter Schupp (1997)

Banach Center Publications

The Hamiltonian for an extended Hubbard model with phonons as introduced by A. Montorsi and M. Rasetti is considered on a D-dimensional lattice. The symmetries of the model are studied in various cases. It is shown that for a certain choice of the parameters a superconducting S U q ( 2 ) holds as a true quantum symmetry, but only for D=1.

Systems with Coulomb interactions

Sylvia Serfaty (2014)

Journées Équations aux dérivées partielles

Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe...

Tail estimates for homogenization theorems in random media

Daniel Boivin (2009)

ESAIM: Probability and Statistics

Consider a random environment in d given by i.i.d. conductances. In this work, we obtain tail estimates for the fluctuations about the mean for the following characteristics of the environment: the effective conductance between opposite faces of a cube, the diffusion matrices of periodized environments and the spectral gap of the random walk in a finite cube.

The continuous Coupled Cluster formulation for the electronic Schrödinger equation

Thorsten Rohwedder (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Nowadays, the Coupled Cluster (CC) method is the probably most widely used high precision method for the solution of the main equation of electronic structure calculation, the stationary electronic Schrödinger equation. Traditionally, the equations of CC are formulated as a nonlinear approximation of a Galerkin solution of the electronic Schrödinger equation, i.e. within a given discrete subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numerical analysis...

The discrete-time parabolic Anderson model with heavy-tailed potential

Francesco Caravenna, Philippe Carmona, Nicolas Pétrélis (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a discrete-time version of the parabolic Anderson model. This may be described as a model for a directed ( 1 + d ) -dimensional polymer interacting with a random potential, which is constant in the deterministic direction and i.i.d. in the d orthogonal directions. The potential at each site is a positive random variable with a polynomial tail at infinity. We show that, as the size of the system diverges, the polymer extremity is localized almost surely at one single point which grows ballistically....

Currently displaying 481 – 500 of 591