The initial value problem for nonlinear Boltzmann equation
We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues {xj}j=1N are close to their classical location {γj}j=1N determined by the limiting density of eigenvalues. Under...
We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.
In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ −1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189–222]. We also get the...
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
We obtain optimal bounds of order O(n −1) for the rate of convergence to the semicircle law and to the Marchenko-Pastur law for the expected spectral distribution functions of random matrices from the GUE and LUE, respectively.