Page 1 Next

Displaying 1 – 20 of 56

Showing per page

Sampling the Fermi statistics and other conditional product measures

A. Gaudillière, J. Reygner (2011)

Annales de l'I.H.P. Probabilités et statistiques

Through a Metropolis-like algorithm with single step computational cost of order one, we build a Markov chain that relaxes to the canonical Fermi statistics for k non-interacting particles among m energy levels. Uniformly over the temperature as well as the energy values and degeneracies of the energy levels we give an explicit upper bound with leading term km ln k for the mixing time of the dynamics. We obtain such construction and upper bound as a special case of a general result on (non-homogeneous)...

Scaling limit and cube-root fluctuations in SOS surfaces above a wall

Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly, Fabio Lucio Toninelli (2016)

Journal of the European Mathematical Society

Consider the classical ( 2 + 1 ) -dimensional Solid-On-Solid model above a hard wall on an L × L box of 2 . The model describes a crystal surface by assigning a non-negative integer height η x to each site x in the box and 0 heights to its boundary. The probability of a surface configuration η is proportional to exp ( - β ( η ) ) , where β is the inverse-temperature and ( η ) sums the absolute values of height differences between neighboring sites. We give a full description of the shape of the SOS surface for low enough temperatures....

Scaling of a random walk on a supercritical contact process

F. den Hollander, R. S. dos Santos (2014)

Annales de l'I.H.P. Probabilités et statistiques

We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the random walk...

Scaling of Stochasticity in Dengue Hemorrhagic Fever Epidemics

M. Aguiar, B.W. Kooi, J. Martins, N. Stollenwerk (2012)

Mathematical Modelling of Natural Phenomena

In this paper we analyze the stochastic version of a minimalistic multi-strain model, which captures essential differences between primary and secondary infections in dengue fever epidemiology, and investigate the interplay between stochasticity, seasonality and import. The introduction of stochasticity is needed to explain the fluctuations observed in some of the available data sets, revealing a scenario where noise and complex deterministic skeleton...

Segmentation of MRI data by means of nonlinear diffusion

Radomír Chabiniok, Radek Máca, Michal Beneš, Jaroslav Tintěra (2013)

Kybernetika

The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...

Semiclassical expansion for the thermodynamic limit of the ground state energy of Kac's operator

Bernard Helffer, Thierry Ramond (2000)

Journées équations aux dérivées partielles

We continue the study started by the first author of the semiclassical Kac Operator. This kind of operator has been obtained for example by M. Kac as he was studying a 2D spin lattice by the so-called “transfer operator method”. We are interested here in the thermodynamical limit Λ ( h ) of the ground state energy of this operator. For Kac’s spin model, Λ ( h ) is the free energy per spin, and the semiclassical regime corresponds to the mean-field approximation. Under suitable assumptions, which are satisfied...

Shape transition under excess self-intersections for transient random walk

Amine Asselah (2010)

Annales de l'I.H.P. Probabilités et statistiques

We reveal a shape transition for a transient simple random walk forced to realize an excess q-norm of the local times, as the parameter q crosses the value qc(d)=d/(d−2). Also, as an application of our approach, we establish a central limit theorem for the q-norm of the local times in dimension 4 or more.

Simulating Kinetic Processes in Time and Space on a Lattice

J. P. Gill, K. M. Shaw, B. L. Rountree, C. E. Kehl, H. J. Chiel (2011)

Mathematical Modelling of Natural Phenomena

We have developed a chemical kinetics simulation that can be used as both an educational and research tool. The simulator is designed as an accessible, open-source project that can be run on a laptop with a student-friendly interface. The application can potentially be scaled to run in parallel for large simulations. The simulation has been successfully used in a classroom setting for teaching basic electrochemical properties. We have shown that...

SLE and triangles.

Dubédat, Julien (2003)

Electronic Communications in Probability [electronic only]

Soft local times and decoupling of random interlacements

Serguei Popov, Augusto Teixeira (2015)

Journal of the European Mathematical Society

In this paper we establish a decoupling feature of the random interlacement process u d at level u , d 3 . Roughly speaking, we show that observations of u restricted to two disjoint subsets A 1 and A 2 of d are approximately independent, once we add a sprinkling to the process u by slightly increasing the parameter u . Our results differ from previous ones in that we allow the mutual distance between the sets A 1 and A 2 to be much smaller than their diameters. We then provide an important application of this...

Currently displaying 1 – 20 of 56

Page 1 Next