Loading [MathJax]/extensions/MathZoom.js
Through a Metropolis-like algorithm with single step computational cost of order one, we build a Markov chain that relaxes to the canonical Fermi statistics for k non-interacting particles among m energy levels. Uniformly over the temperature as well as the energy values and degeneracies of the energy levels we give an explicit upper bound with leading term km ln k for the mixing time of the dynamics. We obtain such construction and upper bound as a special case of a general result on (non-homogeneous)...
Consider the classical -dimensional Solid-On-Solid model above a hard wall on an box of . The model describes a crystal surface by assigning a non-negative integer height to each site in the box and 0 heights to its boundary. The probability of a surface configuration is proportional to , where is the inverse-temperature and sums the absolute values of height differences between neighboring sites. We give a full description of the shape of the SOS surface for low enough temperatures....
We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the random walk...
In this paper we analyze the stochastic version of a minimalistic multi-strain model,
which captures essential differences between primary and secondary infections in dengue
fever epidemiology, and investigate the interplay between stochasticity, seasonality and
import. The introduction of stochasticity is needed to explain the fluctuations observed
in some of the available data sets, revealing a scenario where noise and complex
deterministic skeleton...
The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...
We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
We continue the study started by the first author of the semiclassical Kac Operator. This kind of operator has been obtained for example by M. Kac as he was studying a 2D spin lattice by the so-called “transfer operator method”. We are interested here in the thermodynamical limit of the ground state energy of this operator. For Kac’s spin model, is the free energy per spin, and the semiclassical regime corresponds to the mean-field approximation. Under suitable assumptions, which are satisfied...
We reveal a shape transition for a transient simple random walk forced to realize an excess q-norm of the local times, as the parameter q crosses the value qc(d)=d/(d−2). Also, as an application of our approach, we establish a central limit theorem for the q-norm of the local times in dimension 4 or more.
We have developed a chemical kinetics simulation that can be used as both an educational
and research tool. The simulator is designed as an accessible, open-source project that
can be run on a laptop with a student-friendly interface. The application can potentially
be scaled to run in parallel for large simulations. The simulation has been successfully
used in a classroom setting for teaching basic electrochemical properties. We have shown
that...
In this paper we establish a decoupling feature of the random interlacement process at level , . Roughly speaking, we show that observations of restricted to two disjoint subsets and of are approximately independent, once we add a sprinkling to the process by slightly increasing the parameter . Our results differ from previous ones in that we allow the mutual distance between the sets and to be much smaller than their diameters. We then provide an important application of this...
Currently displaying 1 –
20 of
56