Previous Page 2

Displaying 21 – 34 of 34

Showing per page

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja (1994)

Colloquium Mathematicae

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

Existence of solutions for a model of self-gravitating particles with external potential

Andrzej Raczyński (2004)

Banach Center Publications

We study the existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential. The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and global-in-time solutions, and also a kind of stability of global solutions.

Existence, uniqueness and convergence of a particle approximation for the Adaptive Biasing Force process

Benjamin Jourdain, Tony Lelièvre, Raphaël Roux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181],...

Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms

P. B. Dubovski, S.-Y. Ha (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...

Currently displaying 21 – 34 of 34

Previous Page 2