Previous Page 3

Displaying 41 – 57 of 57

Showing per page

On the motion of a body in thermal equilibrium immersed in a perfect gas

Kazuo Aoki, Guido Cavallaro, Carlo Marchioro, Mario Pulvirenti (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity V(t) to the limiting velocity V and prove that, under suitable smallness assumptions, the approach...

On the one-dimensional Boltzmann equation for granular flows

Dario Benedetto, Mario Pulvirenti (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a Boltzmann equation for inelastic particles on the line and prove existence and uniqueness for the solutions.

On the Periodic Lorentz Gas and the Lorentz Kinetic Equation

François Golse (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that the Boltzmann-Grad limit of the Lorentz gas with periodic distribution of scatterers cannot be described with a linear Boltzmann equation. This is at variance with the case of a Poisson distribution of scatterers, for which the convergence to the linear Boltzmann equation was proved by Gallavotti [Phys. Rev. (2)185, 308 (1969)]. The arguments presented here complete the analysis in [Golse-Wennberg, M2AN Modél. Math. et Anal. Numér.34, 1151 (2000)], where the impossibility of a kinetic...

On the stationary Boltzmann equation

Leif Arkeryd (2001/2002)

Séminaire Équations aux dérivées partielles

For stationary kinetic equations, entropy dissipation can sometimes be used in existence proofs similarly to entropy in the time dependent situation. Recent results in this spirit obtained in collaboration with A. Nouri, are here presented for the nonlinear stationary Boltzmann equation in bounded domains of I R n with given indata and diffuse reflection on the boundary.

On the transient and recurrent parts of a quantum Markov semigroup

Veronica Umanità (2006)

Banach Center Publications

We define the transient and recurrent parts of a quantum Markov semigroup 𝓣 on a von Neumann algebra 𝓐 and we show that, when 𝓐 is σ-finite, we can write 𝓣 as the sum of such semigroups. Moreover, if 𝓣 is the countable direct sum of irreducible semigroups each with a unique faithful normal invariant state ρₙ, we find conditions under which any normal invariant state is a convex combination of ρₙ's.

On three problems of neutron transport theory

Jan Kyncl (1986)

Aplikace matematiky

In this paper, the initial-value problem, the problem of asymptotic time behaviour of its solution and the problem of criticality are studied in the case of linear Boltzmann equation for both finite and infinite media. Space of functions where these problems are solved is chosen in such a vay that the range of physical situations considered may be so wide as possible. As mathematical apparatus the theory of positive bounded operators and of semigroups are applied. Main results are summarized in...

On two quantum versions of the detailed balance condition

Franco Fagnola, Veronica Umanità (2010)

Banach Center Publications

Quantum detailed balance conditions are often formulated as relationships between the generator of a quantum Markov semigroup and the generator of a dual semigroup with respect to a certain scalar product defined by an invariant state. In this paper we survey some results describing the structure of norm continuous quantum Markov semigroups on ℬ(h) satisfying a quantum detailed balance condition when the duality is defined by means of pre-scalar products on ℬ(h) of the form x , y s : = t r ( ρ 1 - s x * ρ s y ) (s ∈ [0,1]) in order...

One-dimensional kinetic models of granular flows

Giuseppe Toscani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and discuss a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. Then, the behavior of the Boltzmann equation in the quasi elastic limit is investigated for a wide range of the rate function. By this limit procedure we obtain a class of nonlinear equations classified as nonlinear friction equations. The analysis of the cooling process shows that the nonlinearity on the relative velocity is of paramount importance...

Currently displaying 41 – 57 of 57

Previous Page 3