Displaying 41 – 60 of 75

Showing per page

Regularity and geometric properties of solutions of the Einstein-Vacuum equations

Sergiu Klainerman, Igor Rodnianski (2002)

Journées équations aux dérivées partielles

We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of...

Sharp L 1 estimates for singular transport equations

Sergiu Klainerman, Igor Rodnianski (2008)

Journal of the European Mathematical Society

We provide L 1 estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.

Currently displaying 41 – 60 of 75