Ein lineares Mehrentscheidungsmodell.
“Classical” optimization problems depending on a probability measure belong mostly to nonlinear deterministic optimization problems that are, from the numerical point of view, relatively complicated. On the other hand, these problems fulfil very often assumptions giving a possibility to replace the “underlying” probability measure by an empirical one to obtain “good” empirical estimates of the optimal value and the optimal solution. Convergence rate of these estimates have been studied mostly for...
In many markets, especially in energy markets, electricity markets for instance, the detention of the physical asset is quite difficult. This is also the case for crude oil as treated by Davis (2000). So one can identify a good proxy which is an asset (financial or physical) (one)whose the spot price is significantly correlated with the spot price of the underlying (e.g. electicity or crude oil). Generally, the market could become incomplete. We explicit exact hedging strategies for exponential...
In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation () based Sharpe ratio for measuring...
The solution of a variety of classes of global optimisation problems is required in the implementation of a framework for sensitivity analysis in multicriteria decision analysis. These problems have linear constraints, some of which have a particular structure, and a variety of objective functions, which may be smooth or non-smooth. The context in which they arise implies a need for a single, robust solution method. The literature contains few experimental results relevant to such a need. We...