An asymptotical variational principle associated with the steepest descent method for a convex function.
This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain Takagi-Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer (SMO) with two...
A new biorthogonalization algorithm is defined which does not depend on the step-size used. The algorithm is suggested so as to minimize the total error after steps if imperfect steps are used. The majority of conjugate gradient algorithms are sensitive to the exactness of the line searches and this phenomenon may destroy the global efficiency of these algorithms.
We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of number of iterations, where is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton’s method.
We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of number of iterations, where L is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton's method.
We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter which defines the size of the neighborhood of the central-path and of the parameter which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined and converges...
We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding to Gale, Farkas, Gordan and Motzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.
The smoothing-type algorithm is a powerful tool for solving the second-order cone programming (SOCP), which is in general designed based on a monotone line search. In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-monotone line search. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. The preliminary numerical results are also reported which indicate...
In this work we study the multivalued complementarity problem on the non-negative orthant. This is carried out by describing the asymptotic behavior of the sequence of approximate solutions to its multivalued variational inequality formulation. By introducing new classes of multifunctions we provide several existence (possibly allowing unbounded solution set), stability as well as sensitivity results which extend and generalize most of the existing ones in the literature. We also present some kind...
In the setting of a real Hilbert space , we investigate the asymptotic behavior, as time t goes to infinity, of trajectories of second-order evolution equations ü(t) + γ(t) + ∇ϕ(u(t)) + A(u(t)) = 0, where ∇ϕ is the gradient operator of a convex differentiable potential function ϕ: ,A: is a maximal monotone operator which is assumed to beλ-cocoercive, and γ > 0 is a damping parameter. Potential and non-potential effects are associated respectively to ∇ϕ and A. Under condition...
In the setting of a real Hilbert space , we investigate the asymptotic behavior, as time t goes to infinity, of trajectories of second-order evolution equations ü(t) + γ(t) + ∇ϕ(u(t)) + A(u(t)) = 0, where ∇ϕ is the gradient operator of a convex differentiable potential function ϕ : , A : is a maximal monotone operator which is assumed to be λ-cocoercive, and γ > 0 is a damping parameter. Potential and non-potential effects are associated respectively to ∇ϕ and A. Under condition...
In der Arbeit geht es um die Charakteristik des allgemeinen Begriffs der asymptotischen Berührung von solchen abgeschlossenen, konvexen Mengen in , wo ihr Abstand gleich Null und ihr Durchschnitt leer ist. Es wird gezeigt, dass unter diesem Umstand man dem fraglichen Mengenpaar ein Tripel von natürlichen Zahlen (die Ordnung der Berührung, der Grad der Berührung und die Diemnsion des zugehörigen asymptotischen, linearen Raumes), welches eine Charakteristik dieser Berührung darstellt, eindeutig zuordnen...
Cet article est la suite de l’article «Autour de nouvelles notions pour l’analyse des algorithmes d’approximation : formalisme unifié et classes d’approximation» où nous avons présenté et discuté, dans le cadre d’un nouveau formalisme pour l’approximation polynomiale (algorithmique polynomiale à garanties de performances pour des problèmes NP-difficiles), des outils permettant d’évaluer, dans l’absolu, les proporiétés d’approximation de problèmes difficiles. Afin de répondre pleinement à l’objectif...
This paper is the continuation of the paper “Autour de nouvelles notions pour l'analyse des algorithmes d'approximation: Formalisme unifié et classes d'approximation” where a new formalism for polynomial approximation and its basic tools allowing an “absolute” (individual) evaluation the approximability properties of NP-hard problems have been presented and discussed. In order to be used for exhibiting a structure for the class NPO (the optimization problems of NP), these tools must be enriched...
In der vorliegenden Arbeit wird das Verfahren der koordinatenweisen Suche mit Hilfe der Intervallarithmetik realisiert. Dadurch ist es möglich, bei speziellen nichtlinearen Optimierungsproblemen alle auftretenden Fehlerarten zu erfaßen, einschliesslich eingangsbedingter Fehler. Vor- und Nachteile werden erläutert sowie Testbeispiele angegeben.