ALIO/EURO V conference on combinatorial optimization
The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of .
The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β-metric traveling salesman problem (Δβ-TSP), i.e., the TSP restricted to graphs satisfying the β-triangle inequality c({v,w}) ≤ β(c({v,u}) + c({u,w})), for some cost function c and any three vertices u,v,w. The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of 3β2/2 and is the best known algorithm for the Δβ-TSP, for 1 ≤ β ≤ 2. We provide a complete...
In this contribution, we will study the influence of the three main components of Best-Worst Ant System: the best-worst pheromone trail update rule, the pheromone trail mutation and the restart. Both the importance of each of them and the fact whether all of them are necessary will be analyzed. The performance of different variants of this algorithm will be tested when solving different instances of the TSP.
Given a weighted undirected graph G = (V,E), a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of G. Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...
We first motivate and define a notion of asymptotic differential approximation ratio. For this, we introduce a new class of problems called radial problems including in particular the hereditary ones. Next, we validate the definition of the asymptotic differential approximation ratio by proving positive, conditional and negative approximation results for some combinatorial problems. We first derive a differential approximation analysis of a classical greedy algorithm for bin packing, the “first...
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the input: each vertex v of a graph G=(V,E) has a certain amount xv of a commodity and wishes to have an amount equal to yv (we assume that and all quantities...
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the input: each vertex v of a graph G=(V,E) has a certain amount xv of a commodity and wishes to have an amount equal to yv (we assume that and all quantities...
In this paper we study bi-directional nearness in a network based on AHP (Analytic Hierarchy Process) and ANP (Analytic Network Process). Usually we use forward (one-dimensional) direction nearness based on Euclidean distance. Even if the nearest point to i is point j, the nearest point to j is not necessarily point i. Sowe propose the concept of bi-directional nearness defined by AHP'ssynthesizing of weights “for” direction and “from” direction. This concept of distance is a relative distance...