Random perturbation of the variable metric method for unconstrained nonsmooth nonconvex optimization
We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is proposed and numerical results are presented, showing that the method is computationally effective and stable....