Page 1

Displaying 1 – 7 of 7

Showing per page

Improved local convergence analysis of inexact Newton-like methods under the majorant condition

Ioannis K. Argyros, Santhosh George (2015)

Applicationes Mathematicae

We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.

Impulse noise removal based on new hybrid conjugate gradient approach

Morteza Kimiaei, Majid Rostami (2016)

Kybernetika

Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient...

Integer Programming Formulation of the Bilevel Knapsack Problem

R. Mansi, S. Hanafi, L. Brotcorne (2010)

Mathematical Modelling of Natural Phenomena

The Bilevel Knapsack Problem (BKP) is a hierarchical optimization problem in which the feasible set is determined by the set of optimal solutions of parametric Knapsack Problem. In this paper, we propose two stages exact method for solving the BKP. In the first stage, a dynamic programming algorithm is used to compute the set of reactions of the follower. The second stage consists in solving an integer program reformulation of BKP. We show that the...

Currently displaying 1 – 7 of 7

Page 1