Feasible modified subgradient method for solving the thermal unit commitment problem as a new approach.
We consider a special class of optimization problems that we call Mathematical Programs with Vanishing Constraints, MPVC for short, which serves as a unified framework for several applications in structural and topology optimization. Since an MPVC most often violates stronger standard constraint qualification, first-order necessary optimality conditions, weaker than the standard KKT-conditions, were recently investigated in depth. This paper enlarges the set of optimality criteria by stating first-order...
In the paper a necessary condition is given for the existence of a minimal point of once continuously differentiable (generally non-convex) function over a general set.
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem , , are given. These conditions work with arbitrary functions , but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It...
Por medio de un conjunto de propiedades se caracteriza una amplia familia de funciones que pueden emplearse como penalidad para la resolución numérica de un problema de programación matemática. A partir de ellas se construye un algoritmo de penalizaciones demostrando su convergencia a un punto factible óptimo. Se estudia la situación de los mínimos sin restricciones respecto de la región factible, la monotonía de la sucesión de valores de la función auxiliar y se dan varias cotas de convergencia....