A stability theorem in nonlinear bilevel programming.
In this short paper, we are concerned with the stability of nonlinear bilevel programs. A stability problem is proven and an example is given to illustrate this theorem.
In this short paper, we are concerned with the stability of nonlinear bilevel programs. A stability problem is proven and an example is given to illustrate this theorem.
We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from to , where is the restricted...
This article develops a parametric method depend on threshold technique for solving some optimization problems on attainable sets of so called (max, min)-separable linear systems. The concept of attainable set for (max, min)-separable linear equation systems will be introduced. Properties of the attainable sets will be studied in detail. The (max, min) - separable linear equation systems, in which the function of unknown variable occur only on one side, will be consider. The main idea of the proposed...
The multiparametric 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to a generalized min max objective function such that the min sum and min max are particular cases.
The multiparametric min max 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of min max 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to the objective function.
The multiparametric min max 0-1-Integer Programming (0-1-IP) problem relative to the objective function is a family of min max 0-1-IP problems which are related by having identical constraint matrix and right-hand-side vector. In this paper we present an algorithm to perform a complete multiparametric analysis relative to the objective function.
We build a multi-stage stochastic program of an asset-liability management problem of a leasing company, analyse model results and present a stress-testing methodology suited for financial applications. At the beginning, the business model of such a company is formulated. We introduce three various risk constraints, namely the chance constraint, the Value-at-Risk constraint and the conditional Value-at-Risk constraint along with the second-order stochastic dominance constraint, which are applied...
This paper deals with a certain class of unbounded optimization problems. The optimization problems taken into account depend on a parameter. Firstly, there are established conditions which permit to guarantee the continuity with respect to the parameter of the minimum of the optimization problems under consideration, and the upper semicontinuity of the multifunction which applies each parameter into its set of minimizers. Besides, with the additional condition of uniqueness of the minimizer, its...
Partiendo del problema de programación lineal multiobjetivo bajo incertidumbre y definiendo la utilidad de una decisión factible x, como el k-ésimo valor ordenado del vector (c1x, c2x, ..., cpx), estudiamos en este trabajo el problema múltiple planteado en el caso de un conocimiento incompleto de los objetivos, así como la sensibilidad de una solución óptima en relación con dicho conocimiento parcial.
Soit un espace de Banach de dual topologique . (resp. ) désigne l’ensemble des parties non vides convexes fermées de (resp. -fermées de ) muni de la topologie de la convergence uniforme sur les bornés des fonctions distances. Cette topologie se réduit à celle de la métrique de Hausdorff sur les convexes fermés bornés [16] et admet en général une représentation en terme de cette dernière [11]. De plus, la métrique qui lui est associée s’est révélée très adéquate pour l’étude quantitative...
Let X be a Banach space and X' its continuous dual. C(X) (resp. C(X')) denotes the set of nonempty convex closed subsets of X (resp. ω*-closed subsets of X') endowed with the topology of uniform convergence of distance functions on bounded sets. This topology reduces to the Hausdorff metric topology on the closed and bounded convex sets [16] and in general has a Hausdorff-like presentation [11]. Moreover, this topology is well suited for estimations and constructive approximations [6-9]. We...
Cet article est un travail de synthèse autour de l’analyse de sensibilité pour les problèmes linéaires en variables 0-1. De nombreux aspects sont ainsi abordés : historique et formes d’analyse de sensibilité, exemples d’application, complexité, conditions d’optimalité, algorithmes et approches. Nous dressons par ailleurs quelques perspectives de recherche actuelles dans ce domaine.
Cet article est un travail de synthèse autour de l'analyse de sensibilité pour les problèmes linéaires en variables 0-1. De nombreux aspects sont ainsi abordés : historique et formes d'analyse de sensibilité, exemples d'application, complexité, conditions d'optimalité, algorithmes et approches. Nous dressons par ailleurs quelques perspectives de recherche actuelles dans ce domaine.
The aim of this paper is to present some ideas how to relax the notion of the optimal solution of the stochastic optimization problem. In the deterministic case, -minimal solutions and level-minimal solutions are considered as desired relaxations. We call them approximative solutions and we introduce some possibilities how to combine them with randomness. Relations among random versions of approximative solutions and their consistency are presented in this paper. No measurability is assumed, therefore,...
In this work we study the multivalued complementarity problem on the non-negative orthant. This is carried out by describing the asymptotic behavior of the sequence of approximate solutions to its multivalued variational inequality formulation. By introducing new classes of multifunctions we provide several existence (possibly allowing unbounded solution set), stability as well as sensitivity results which extend and generalize most of the existing ones in the literature. We also present some kind...