Displaying 41 – 60 of 175

Showing per page

Bemerkungen zum Verfahren der koordinatenweisen Suche

Dieter Oelschlägel, Herbert Süsse (1981)

Aplikace matematiky

In der vorliegenden Arbeit wird das Verfahren der koordinatenweisen Suche mit Hilfe der Intervallarithmetik realisiert. Dadurch ist es möglich, bei speziellen nichtlinearen Optimierungsproblemen alle auftretenden Fehlerarten zu erfaßen, einschliesslich eingangsbedingter Fehler. Vor- und Nachteile werden erläutert sowie Testbeispiele angegeben.

Bottleneck capacity expansion problems with general budget constraints

Rainer E. Burkard, Bettina Klinz, Jianzhong Zhang (2001)

RAIRO - Operations Research - Recherche Opérationnelle

This paper presents a unified approach for bottleneck capacity expansion problems. In the bottleneck capacity expansion problem, BCEP, we are given a finite ground set E , a family of feasible subsets of E and a nonnegative real capacity c ^ e for all e E . Moreover, we are given monotone increasing cost functions f e for increasing the capacity of the elements e E as well as a budget B . The task is to determine new capacities c e c ^ e such that the objective function given by max F min e F c e is maximized under the side constraint...

Bottleneck Capacity Expansion Problems with General Budget Constraints

Rainer E. Burkard, Bettina Klinz, Jianzhong Zhang (2010)

RAIRO - Operations Research

This paper presents a unified approach for bottleneck capacity expansion problems. In the bottleneck capacity expansion problem, BCEP, we are given a finite ground set E, a family F of feasible subsets of E and a nonnegative real capacity ĉe for all e ∈ E. Moreover, we are given monotone increasing cost functions fe for increasing the capacity of the elements e ∈ E as well as a budget B. The task is to determine new capacities ce ≥ ĉe such that the objective function given by maxF∈Fmine∈Fce...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Derivatives of orbital function and an extension of Berezin-Gel’fand’s theorem

Tin-Yau Tam, William C. Hill (2016)

Special Matrices

A generalization of a result of Berezin and Gel’fand in the context of Eaton triples is given. The generalization and its proof are Lie-theoretic free and requires some basic knowledge of nonsmooth analysis. The result is then applied to determine the distance between a point and a G-orbit or its convex hull.We also discuss the derivatives of some orbital functions.

Distancias elipsoidales y puntos eficientes. Un método interactivo.

María Teresa Ramos Domínguez, Miguel Sánchez García, Carlos González Martín (1988)

Trabajos de Investigación Operativa

En este trabajo se estudian las propiedades que relacionan las distancias elipsoidales con la generación de puntos eficientes de un problema de programación multiobjetivo. Basándonos en estas propiedades, hemos construido un algoritmo interactivo convergente.

Dualidad en la programación lineal en subconjuntos difusos.

José Llena Sitjes (1988)

Trabajos de Investigación Operativa

La programación lineal sobre subconjuntos difusos, definida por Zimmermann, se desarrolla en estrecha relación con la definición de las funciones pertinentes funciones de pertenencia. Se estudia la dualidad difusa, ligada a la dualidad en los problemas de programación lineal con multicriterios.

Currently displaying 41 – 60 of 175