Ein lineares Mehrentscheidungsmodell.
We consider the problem of minimizing the max of two convex functions from both approximation and sensitivity point of view.This lead up to study the epiconvergence of a sequence of level sums of convex functions and the related dual problems.
In this paper, a solution procedure is proposed to solve fuzzy linear fractional programming (FLFP) problem where cost of the objective function, the resources and the technological coefficients are triangular fuzzy numbers. Here, the FLFP problem is transformed into an equivalent deterministic multi-objective linear fractional programming (MOLFP) problem. By using Fuzzy Mathematical programming approach transformed MOLFP problem is reduced single objective linear programming (LP) problem. The proposed...
Solutions of several problems can be modelled as solutions of nonsmooth equations. Then, Newton-type methods for solving such equations induce particular iteration steps (actions) and regularity requirements in the original problems. We study these actions and requirements for nonlinear complementarity problems (NCP's) and Karush-Kuhn-Tucker systems (KKT) of optimization models. We demonstrate their dependence on the applied Newton techniques and the corresponding reformulations. In this way, connections...
In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the conditions proposed in [2]. We show that the corresponding large-update algorithm improves the iteration complexity with a factor when compared with the method based on the use of the classical...
Recently, Y.Q. Bai, M. El Ghami and C. Roos [3] introduced a new class of so-called eligible kernel functions which are defined by some simple conditions. The authors designed primal-dual interior-point methods for linear optimization (LO) based on eligible kernel functions and simplified the analysis of these methods considerably. In this paper we consider the semidefinite optimization (SDO) problem and we generalize the aforementioned results for LO to SDO. The iteration bounds obtained are...
In this paper, the robust counterpart of the linear fractional programming problem under linear inequality constraints with the interval and ellipsoidal uncertainty sets is studied. It is shown that the robust counterpart under interval uncertainty is equivalent to a larger linear fractional program, however under ellipsoidal uncertainty it is equivalent to a linear fractional program with both linear and second order cone constraints. In addition, for each case we have studied the dual problems...
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified...
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem's data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified...
In this paper, we study local stability of the mean-risk model with Conditional Value at Risk measure where the mixed-integer value function appears as a loss variable. This model has been recently introduced and studied in~Schulz and Tiedemann [16]. First, we generalize the qualitative results for the case with random technology matrix. We employ the contamination techniques to quantify a possible effect of changes in the underlying probability distribution on the optimal value. We use the generalized...